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INTRODUCTION 

Cerebral Palsy (CP) occurs in 2 to 3 per every 1000 live births, making it the most common motor disorder in 
young children [1]. There is no cure for CP. However, disciplined therapy can improve outcomes. There is 
currently a shortage of therapists available to treat CP, a lack of objective measures for the upper extremities 
(UEx) to evaluate progress of patients, a mismatch of location between therapists and their patients, and high 
costs associated with therapy. In many ways CP is a good representation of many 
classes of disorders which impair the UEx. To begin to address the need for an 
affordable quantitative diagnostic tool in pediatric rehabilitation which can be used 
both in-person and remotely, the UPenn Rehab Robotics lab is developing a low 
cost socially assistive robot (SAR) [2] (Lil’Flo) to aid in remote, semi-autonomous, 
and fully autonomous assessment and treatment of upper extremity impaired 
pediatric patients. The robot will include a humanoid form seated on a mobile base 
(fig. 1) which can engage with children in low force contact, acting as a companion 
to the patient. It will be able to interact with patients and demonstrate activities to 
facilitate assessment via telepresence based remote control. For example, patients 
could be asked to play a game of “Simon Says” with the robot or touch various 
targets on the robot. The system will analyze patient behavior to determine the level 
of function of the patient and appropriate treatment paths forward. As a final gold 
standard, we envision a robot which could naturally “play” with patients as an 
avenue for diagnostics and therapy. There has been previous work in this space, 
most notably by the NAOTherapist (formerly Therapist, Ursus) project [3-5] and the 
RAC CP Fun project [6-7]. We have also explored the use of SARs in the elder care 
space using our Flo robot (fig. 1) [8]. 

A critical component of this project will be a perception system which can evaluate 
patient UEx function. The perception system will deliver information to the clinician 
which they cannot receive via their senses due to the barrier of telepresence. For 
example the range of motion of the patients joints, the maximum velocities of the 
joints, the emotional state of the patient, and a set of overarching diagnostic scores. 
It will also be useful in both non-remote and remote interactions, to deliver objective 
measures which can be difficult to obtain via traditional means, making it useful 
beyond strictly robotic applications, as a purely observational system. 

The robot and perception system together will hopefully help to improve information 
transfer in telepresence interactions, which can break down due to the narrow 
amount of communication which is possible via video and audio alone. This idea is summarized in figure 2. 

HARDWARE DESIGN 

Although robotic systems exist which could be used to achieve some of our goals, they fail to meet all our design 
requirements: 1) low cost for maximum impact 2) expressive face for social connectivity 3) easily modifiable 
hardware 4) mobile for remote deployments. So, we are designing our own hardware to meet those requirements. 
We are also interested in showing, especially for telepresence encounters, the benefits of using a humanoid robot 
form over using a robot with only a screen. This will justify translational work in the telepresence space allowing 
the project to have the broadest impact in the shortest possible time. It will be easier to accomplish this with a 
custom system. 

We currently have a mobile robot from VGo with a removable Aldebaran Nao Robot torso mounted on the robot, 
which has been used for initial validation work [8]. This platform has been useful for the speed with which we can 
test with it. However, it fails to demonstrate the true potential of an SAR in the space, due to its high cost. When 

Figure 1: On the left, 
the system which we 
developed to explore 
the use of socially 
assistive robots in 
elder care facilities, it 
is a Nao robot on a 
VGo telepresence 
base. On the right, our 
work in progress for 
the lower cost Lil’Flo 
system. 
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our low cost robotic platform is 
complete, it will replace the Nao/VGo 
system at an expected cost ratio of 1:5. 
Both systems can be seen in figure 1.  

To help accelerate work on the design 
of our system we began with off the 
shelf robotic components. An XYZ 
Bolide robot as the humanoid and an 
iRobot Create as the base. The Bolide 
was chosen for its independently 
controllable motors with digital 
feedback. We have modified it to have 
proportions of a young child, extending 
its limbs significantly. We have also 
designed and are iterating on a custom 
head which can display emotions via 
LED screens. Work is still underway to 
develop a skin to cover the robot’s 
internals. 

We decided to make Lil’Flo 
approximately half of the height of the 
original Flo robot. This allowed us to 
use a low cost mobile robot without 
having to worry about the system 
tipping over. This also makes sense for 
the target population of children, who will always be seated during robot interactions for safety.  

Although the iRobot Create was a useful first mobile base, we are currently transition to an iClebo Kobuki, which 
is a more robust more easily controlled differential drive mobile base. In the long term, we are interested in 
exploring a holonomic base and whether the additional costs inherent in one are justified by improved patient 
interactions.  

PERCEPTION SYSTEM DESIGN 

Current techniques for evaluating UEx function are inadequate. Measures which are judged by clinicians are 
subjective, leading to inter and intra clinician variability. Further, the cost and availability of high skilled clinicians 
prevents all patients from being evaluated sufficiently frequently. Measures based on motion capture (MoCap) 
systems are high cost and markers on the skin can lead to non-representative behavior by patients. To enable 
remote telepresence and autonomous robot interactions with patients, as shown in figure 2, and to improve the 
objectivity of the diagnostic space in general, it is necessary to develop computational techniques for analyzing 
patient function with high repeatability on low cost hardware. It is known that neurological damage alters UEx 
motion, making it less smooth, with lower maximum velocities, smaller ranges of motion, etc [9-10]. We believe 
that these changes in motion could be detected by a computer vision based pipeline.  
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Figure 2: A comparison of interactions between patients and 
clinicians in person and patients, clinicians, and the robot in 
telepresence interactions. 
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Figure 3: Block diagram of the perception system showing the progression from video input to 
general clinical measures being output to the clinician. 
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The advent of the Microsoft Kinect and related low cost RGBD sensors led to technology demonstrations 
capturing subject motion to determine kinematic measures such as velocity and range of motion [11] and even as 
grading tools for existing tests such as the SHUEE [12]. Our lab has performed work looking at precision contact 
measurement of wrist kinematics for diagnostics in adult stroke and CP patients [13]. 

At the same time, the computer vision community has progressed greatly in recent years. Advents in machine 
learning, especially deep convolutional neural networks, have enabled recognition of objects to become a low 
speed solved problem. More recent novel network architectures such as stacked hourglass networks [14], Faster 
R-CNN [15], and part affinity fields [16] have made pose estimation from video realizable. Building on this work, 
progress has been made towards reconstruction 3D joint positions from 2D joint positions [17-18]. These methods 
rely on models of the human form which are learned to represent the general shape of a person. Widespread 
adoption of UAVs has also led to further developments in the RGB+D sensor space with much of the low-cost 
side of the market moving to stereo based designs.  

We are currently working to develop the pipeline for performing objective evaluations of upper extremity impaired 
pediatric patients as overviewed in figure 4. The first step of the pipeline will be to extract 3D time series joint 
positions (TSJP) from RGB video. In initial testing, we have used part affinity fields [16] and stacked hourglass 
networks [14] to extract the 2D joint locations of subjects doing a 
series of range of motion activities. We have then leveraged [17] to 
estimate the full 3D pose of the subject. The results can be seen in 
Figure 4. Given that our target population’s physiology is atypical, 
we will have to adjust these methods to develop on the fly bespoke 
models of each patient, as opposed to relying on the statistical 
models of an average person which are currently used. As the 
project progresses, we will also explore opportunities and challenges 
for augmenting the RGB pipeline with low cost depth data, for 
example from the Intel RealSense line of cameras. In addition to 
using known kinematic measures of function which can be extracted 
from TSJP, as we gather more data, we will develop a learned 
model using machine learning techniques to attempt to classify 
patients, with the option to use known medical information and the 
instructed patient activity/“optimal” motion as priors.  

To perform the necessary computations for the perception system a 
small computer (Intel NUC 7 i5 BNK) has been placed on the robot. 
It will do the low cost initial computations to decrease the video size 
to be processed. For example, segmenting out the subject and 
performing facial recognition. The selected and compressed video 
will then be streamed to a server for complete processing in a high-
powered compute environment with distributed GPUs. The onboard 
computer will also be used for eventual navigation tasks as well as 
voice synthesis and robot control.  

CONCLUSION 

Our hope in working on this project is to address gaps in care by 
extending the geographic reach of clinicians by using telepresence 
for rehab. By using a humanoid robot as a social agent for 
communication to and motivation of patients we expect to show that 
care is improved when compared to telepresence on a screen alone. 
To further augment telepresence interactions, we are developing a 
perception system which can deliver back to the clinician metrics 
which they can likely not garner via a video feed alone. We expect 
that this system will have implications beyond telepresence interactions by allowing for low cost objective testing 
of upper extremity function in pediatric patients. In the long term, we hope that these two technologies can be the 
basis for the development of more autonomous systems which will allow clinicians to focus on the most 
demanding components of therapy, leaving the more monotonous tasks to robots, enabling lower costs and 
increased patient interaction time leading to overall improved outcomes.  

 Figure 4: Data collected during a 
pilot test with a healthy subject, 
with the subject touching the back 
of their head. Data was collected 
using a standard un calibrated cell 
phone camera and processed using 
a stacked hourglass network [14] 
followed by Zhou’s method for 3D 
reconstruction [17] and cleaned with 
dropout rejection. On top, is the x-
direction, in the middle, is the y-
direction, and on the bottom, is the 
z-direction. Solid blue lines are 
positions in arbitrary coordinates, 
dashed red lines are speeds in 
arbitrary coordinates. As can be 
seen, the primary axes of motion, y 
(1.5 unit change) and z ( .6 unit 
change), show smooth movements 
with velocities approximating the 
bell curve predicted by Hogan [9]. 
The x axes which underwent much 
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